Full Length Research Paper

Information awareness and utilization of haematinics among pregnant women in Nigeria

Omiunu, Ojinga Gideon

Unicorn Academics and Organisation Developmental Research Centre, P.O.Box 20671, UI Post Office, Ibadan, Oyo State, Nigeria

Author's email: ohiogingao@yahoo.com; omiunuojingag@gmail.com; Mobile No: +2348051779079, 8029219415

Accepted 16 October, 2015

ABSTRACT

This study investigated the information awareness in the use of haematinics among pregnant women in Nigeria. The study adopted a correlational survey research design and a sample size of 300 respondents was used. Ten health centres were used for the study and a proportionate sampling technique was deployed to select respondents in the centres. The instrument used for data collection was the questionnaire; and has five major sections including the demographic characteristics of respondents. A reliability analysis was done to ensure that the sections in the instrument were reliable and provided a result of 0.76 for attitude and 0.83 for knowledge, 0.74 for complication awareness and 0.71 for utilization of haematinics. Inform consent was obtained from respondents; and the purpose of the study was made known to them and questionnaire was administered after consent was obtained. Frequency, percentage, Spearman’s Correlation and Binary Logistic regression were used for data analysis and relationship between variables of interest were obtained at 0.05 level of significance. The findings of the study showed that women have adequate information and knowledge of haematinics (approximately 80%) and there was a high level of its use among women. Attitudes of women towards haematinics was also very high (approximately 80%), howbeit, their attitudes do not influence their use of haematinics (p>0.05). In addition, knowledge of women about haematinics affected the use of haematinics (p<0.05). Furthermore, the demographic characteristics of pregnant women come to play in the utilization of haematinics with major emphasis on age, health centres, educational level, among others (p<0.05). To this end, it was recommended that there should be an increasing level of awareness of haematinics in various health centres in the form of users education and public awareness especially for pregnant women; various methods of information dissemination should be inculcated especially in the rural areas such as using folk and traditional media and more importantly the use of major ICTs and media to educate people especially women and pregnant women on the issue of the use of haematinics. This can increase the awareness of people and also change their attitudes towards its use especially in the rural areas.

Keywords: Haematinics, information awareness, pregnant women

INTRODUCTION

Child mortality and maternal health problems are major impediments to community and national development and have raised debates and interest among scholars and bodies to combat against them. This made them...
important Goals (Goals 4 and 5 respectively) of the Millennium Development Goals (MDG). The MDG revealed the connection of child mortality and maternal health to national development. It is therefore, not a fallacy when one affirms that development cannot be achieved until child mortality is reduced and maternal health is improved. These have given birth to deploying various methods to preventing and reducing child mortality and improving maternal health especially during the period of pregnancy.

The period of pregnancy is characterised by many problems that if not handled with care, the life of the baby and that of the mother may be at risk. Health problems during pregnancy among pregnant mothers may include depression, ectopic, fetal problems, gestational diabetes, high blood pressure, hyperemesis gravidarum, miscarriages, placenta previa, placenta abruption, preeclampsia, preterm labour, anaemia, among others (Office on Women’s Health, 2010). Of importance to this study is the prevalence of anaemia among pregnant women and unfortunately, approximately half of pregnant women suffer from anaemia worldwide. Anaemia is a condition in which the number of red blood cells or the oxygen-carrying capacity in a pregnant woman is insufficient to meet the physiologic needs, and it is known to vary by age, sex, altitude, smoking, and pregnancy status. (World Health Organisation, 2011; Getachew et al., 2012).

Although, different standards have been provided to gauge and peg the occurrence of anaemia during pregnancy. For example, maternal anemia occurs at a Hemoglobin (Hb) level of <11g/dl, or Hematocrit (Hct) of <33% in all trimesters of pregnancy. (World Health Organisation, 2011) Anaemia in pregnancy is further divided into: mild anaemia (haemoglobin 1010.9g/dL), moderate anaemia (Hb 7.0-9.9g/dL) and severe anaemia (haemoglobin < 7g/dL). (World Health Organization, 1992). Another author placed the cut off downwards to 10g/dl, (Nwizu et al., 2011), which makes it suitable to use for this study because using the criteria of World Health Organization (World Health Organization, 1992) may mean that most women would be classified as anaemic in the developing countries such as Nigeria.

Generally, it is estimated that 58.27 million women are anaemic during pregnancy, of whom 55.75 million (95.7%) live in developing countries such as Nigeria. (Van den Broek, 2003). In the sub-Saharan Africa which include Nigerian, approximately 400,000 pregnant women develop moderate or severe anaemia (haemoglobin < 80 g/L or hematocrit < 0.25). (Guyatt and Snow, 2001) Furthermore, the prevalence of anaemia in pregnancy is estimated at between 35% and 75% in sub-Saharan Africa. (Hoque et al., 2007). These stochastic figures are getting alarming and there is no doubt that urgent attention is needed to cushion the prevalence and effect of anaemia especially in developing countries such as Nigeria.

Causes of anaemia are elastic and these may vary differently however, globally, iron deficiency is thought to be the most common cause of anaemia. But other nutritional deficiencies such as folate, vitamin B12 and vitamin A, acute and chronic inflammation, and parasitic infections and inherited or acquired disorders that affect haemoglobin synthesis, red blood cell production or red blood cell survival, can cause anaemia. (World Health Organisation, 2011). Other factors include socio demographic, genetic factors, nutritional deficiencies, and infectious agents. (Van den Broek, 2003). Treatments against anaemia vary also, due to the severity of the anaemia and can generally be achieved by increasing foods containing iron, oral iron tablets or by the use of parenteral iron. To do this, haematinics is been deployed.

Haematinics are chemical agents that improve the quality of blood, increase haemoglobin level and the number of erythrocytes. Examples include Iron (Fe), Folic acid, Vitamin B12, Erythropoietin, Zinc (Zn) and Cobalt (Co). (Usman, 2013). Haematinics (particularly Iron) lead to the rise in serum erythropoietin which is known to decrease during pregnancy. Deficiency of these essential haematinics especially among pregnant women may have elastic effects on both mother and foetus such as low birth weight (LBW) of child, decrease work productivity, altering child development (or intelligence), high rate of child and maternal mortality, among others. Also, the awareness of this method among pregnant women is very important to the effectiveness of the treatment and to curtailing it. (Sharma and Sharma, 2012; Alam et al., 2005). Information awareness and use is most often constrained to the study of ICT and information resources such as library, e-books, among others. Putting into consideration the words of some authors, (Sharma and Sharma, 2012; Alam et al., 2005), a user (this time of haematinics) would possibly be aware of any phenomenon (this time of haematinics) if and only if such a user has adequate information about such phenomenon. In addition, it has been revealed that awareness influences usage and that increase awareness leads to increase usage. (Okik, 2012). Therefore, this study investigated the information awareness in the use of haematinics among pregnant women in Nigeria.

Previous studies
Iron deficiency could be a sign of low haemoglobin level and it is the most common deficiency state in the world, affecting more than 2 billion people globally but more prevalent and also remained a significant problem in less-developed countries such as Nigeria. (Pavord et al., 2011) Effective management is needed to prevent adverse
maternal and pregnancy outcomes. Sometimes growth of babies are influenced by some growth factors which could be caused by maternal malnutrition, and lack of efficient haemoglobin, and are associated with intrauterine growth restriction (IUGR), also known as foetal growth restriction (FGR). This IUGR is associated with an increased risk of both short term and long-term health problems in maternal health. The immediate birth outcome is that of a baby being born small for gestational age (SGA), increasing the risks of neonatal morbidity and mortality. (Akram, 2011). These problems may perpetuate throughout life resulting in increased blood pressure, cardiovascular and cerebrovascular disease, insulin resistance, and an increased incidence in type II diabetes mellitus.

There are many factors that influence growth outcome of newborn babies and have been grouped into two: maternal and foetal. (Golalipour et al., 2003; Akram, 2011). Maternal factors may include maternal size (maternal constraint), adequate nutrition throughout pregnancy, maternal glucose metabolism and thyroid hormone levels. Foetal factors include genetic and environmental factors, foetal and infant nutrition.

Maternal constraint is a principal non-genetic factor determining foetal size and occurs as a result of maternal and utero-placental factors limiting foetal growth. (Ibid). This is particularly seen in cases of nutritional deprivation, whereby poor maternal nutrition results in decreased nutrition to the foeto-placental environment thereby limiting growth. In addition, maternal constraint is divided into two major types: the first reveals that maternal size accounts for a physical constraint impeding foeto-placental growth which is known as a supply driven constraint, while the second showed a discrepancy in the supply and demand of nutrients as is the case of twin pregnancies and is known as demand-driven constraint (Gluckman and Hanson, 2004).

While the study on anaemia is more prevalent, studies to investigate their information awareness are not pronounced especially in the developing countries such as Nigeria where attitude could be so important because it has been stated that attitude is everything. (Harrell, 2005). To this end, this study seeks to investigate the information awareness of the utilization of haematinics among pregnant women in Nigeria.

Theoretical underpinning

Deploying models or frameworks with respect to health may be too compounding because in this situation one is dealing with lives and not things or animal, so greater care needs to be taken. However this study deployed and adapted the predicting health behaviour with social cognition models, (MacKian, 2003). It is a rework on the health belief model. The range of behaviours that have been examined have been categorized into three broad areas using health belief models: preventive health behaviours, sick role behaviours and clinic use. (Sheeran and Abraham, 1996). In this type of model, individual beliefs offer the link between socialization and behaviour. Health belief model has two major elements, these includes threat perception and behavioural evaluation. Threat perception depends upon perceived susceptibility to illness and anticipated severity while behavioural evaluation consists of beliefs concerning the benefits of a particular behaviour and the barriers to it. (Figure 1).

In addition, individuals who believed they have control over their health are more likely to engage in health promoting behaviour (Norman and Bennett, 1996), such as using haematinics during pregnancy. The health belief model and the predicting health behaviour with social cognition models attempt to predict health behaviour through two major assumptions central to classic health promotion. These are: that health is influenced by behavior and that behaviour is modifiable. (Conner and Norman, 1996). Thus, this present study through these two models provided a dynamic health improving model for reducing child mortality and increase maternal health in developing countries (figure 2).

The assumptions of this present model are that the use of haematinics is been hypothesized to reduce child
Figure 2. Health improvement model for reducing child mortality and increase maternal health
Source: The Author

mortality and increase maternal health howbeit, this is affected by attitudes of women towards the use of and knowledge of haematinics, knowledge of complication during pregnancy that may be caused by lack of the use of haematinics and their demographic characteristics. In addition, Information awareness of haematinics and knowledge of complication awareness during pregnancy may also influence attitude of pregnant women towards the use of haematinics.

Bringing in the Health Belief Model (HBM) to explain and predict health behaviours of pregnant women, the attitudes and beliefs of individuals which are products of their knowledge of haematinics and/or knowledge of complication problems in pregnancy are important. The HBM was first developed in the 1950s in response to the failure of a free tuberculosis (TB) health screening program. (University of Twnete, 2012). In recent times, the HBM has been deployed and used to explore a variety of long- and short-term health behaviours, including sexual risk behaviours and the transmission of diseases. For the HBM, the assumptions underlying the model are that a person will take a health-related action (i.e., use haematinics) if that person:

1. feels that a negative health condition can be avoided such as pregnancy complication, child and maternal death,
2. has a positive expectation that by taking a recommended action such as that of taking haematinics, she will avoid a negative health condition, and
3. believes that she can successfully take a recommended health action.

The HBM was spelled out in terms of four constructs representing the perceived threat and net benefits which are: perceived susceptibility, perceived severity, perceived benefits, and perceived barriers. These concepts were proposed as accounting for people’s ‘readiness to act’. In this present study, perceived susceptibility and severity are captured by complication issues during pregnancy, perceived benefits is linked to the importance and usefulness of taking haematinics by pregnant women. Information awareness and attitude were brought into the model.

METHODOLOGY

The study adopted a correlational survey research design and a sample size of 300 respondents was used. Ten health centres were used for this study and a proportionate sampling technique was deployed to select respondents in the centres. In addition, an inform consent was obtained before an individual would be involved in the study and information presented were handled anonymously. The instrument used for data collection was the questionnaire; and has five major sections and a reliability analysis was done to ensure that the constructs in the instrument were reliable and this provided a result of 0.76 for attitude and 0.83 for knowledge, 0.74 for complication awareness and 0.71 for utilization of haematinics. Inform consent was obtained from respondents; and the purpose of the study was made known to them and questionnaire was administered after consent was obtained. Frequency, percentage, spearman’s correlation and binary logistic regression were used for data analysis and relationship between variables of interest were obtained at 0.05 level of significance.
RESULTS AND DISCUSSIONS

The findings of the study revealed the level of knowledge of haematinics among women. Approximately 81% stated that they have heard of haematinics before; 80% stated that haematinics aid Iron in the human body; 77% have good knowledge of different aspects of reproductive health in pregnancy; 76% stated that haematinics are chemical substances that improve the quality of blood; and 66% stated that it could be used as supplement for pregnant women, however, 24% of the respondent do not understand what haematinics is. This revealed that a considerable number of the respondents have good knowledge and understanding of haematinics and its functions in pregnant women.

In addition, 83% stated that it is good to consistently use haematinics during pregnancy; 80% stated that it is even good to use haematinics prior to pregnancy, however, 30% stated that they have never use haematinics before; 24% stated that they see the use of haematinics during pregnancy as waste of time while only 17% stated that haematinics has nothing to do with pregnancy. This explained that women have positive and good attitudes towards the practice and use of haematinics. Furthermore, 97% take Folic acid during pregnancy; 91% stated that they take Iron during pregnancy; 90% take Vitamin B12 during pregnancy; 89% take Erythropoietin during pregnancy; 83% consume food that are fortified with Folic acid during pregnancy; and strongly adhere to haematinics use prescription during pregnancy respectively; 82% take Cobalt during pregnancy; 81% take Zinc during pregnancy and 47% stated that they only use haematinics when convenient. This implied that the use of haematinics among women during pregnancy is very high as more than average used it efficiently during pregnancy.

The binary logistic regression analysis is presented in table 1 and 2. Table 1 reveals the classification table of the binary logistic regression analysis.

The classification table in table 1 reveals that the result of prediction that is provided in the binary logistic regression result in table 2 would be accurately predicted by 90.3%. This shows a high accuracy and prediction rate. Table 2 presents the binary logistic regression result.

The binary logistic regression result in table 2 reveals that health centre type was a significant factor (p<0.05) and account for non-utilization of haematinics. This reveals that women in some health centres do not utilize haematinics. Age was also a major factor however only those respondents below 25 years was significant (p<0.05) and account for non utilization of haematinics. This also implies that individuals below 25 years do not use haematinics. Education qualification of women was also a significant factor (p<0.05) (respondents with no formal education) and account for utilization of haematinics. This reveals that women with no formal education are attracted to using haematinics than women with higher educational qualification. Furthermore, residence of respondents (respondents living in Urban) was also significant (p<0.05) accounting for use of haematinics. This implies that individuals living in the urban areas do use haematinics compared to those residing in the rural. The Knowledge of women about haematinics was highly significant (p<0.05) and account for use of haematinics. This implies that women with good knowledge of haematinics use it during pregnancy than those with little or no knowledge. Complication awareness during pregnancy that may be experienced by women was also a significant (p<0.05) accounting for utilization of haematinics. This implies that women who are aware of the complications during pregnancy would use haematinics than those who are ignorant of these complications.

In addition, the result of the study in table 2 reveals that a unit increase in age level would reduce the use of haematinics by 1 percent; an increase in education level would decrease the use of haematinics by 47%; an increase in urbanization would increase the use of haematinics by 89%; an increase in knowledge of haematinics would increase the use of haematinics by 31%; while an increase in the complication awareness of pregnancy would increase the use of haematinics by 6%. Furthermore, the result for the relationship between complication awareness and information awareness of haematinics are provided in table 3.

The correlation result in table 3 reveals that only complication awareness during pregnancy influences
Table 2. Binary Logistic Regression Result

<table>
<thead>
<tr>
<th>Variables in the Equation</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>Df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital (Ref Cat= Health Centre 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Centre 1 (Anonymous)</td>
<td>-8.270</td>
<td>3.826</td>
<td>4.672</td>
<td>1</td>
<td>.031</td>
<td>.012</td>
</tr>
<tr>
<td>Health Centre 2 (Anonymous)</td>
<td>-3.960</td>
<td>2.669</td>
<td>2.202</td>
<td>1</td>
<td>.138</td>
<td>.019</td>
</tr>
<tr>
<td>Health Centre 3 (Anonymous)</td>
<td>1.874</td>
<td>3.771</td>
<td>.247</td>
<td>1</td>
<td>.619</td>
<td>6.514</td>
</tr>
<tr>
<td>Health Centre 4 (Anonymous)</td>
<td>.062</td>
<td>2.589</td>
<td>.001</td>
<td>1</td>
<td>.981</td>
<td>1.064</td>
</tr>
<tr>
<td>Health Centre 5 (Anonymous)</td>
<td>5.379</td>
<td>40192.987</td>
<td>.000</td>
<td>1</td>
<td>1.000</td>
<td>216.831</td>
</tr>
<tr>
<td>Health Centre 6 (Anonymous)</td>
<td>-2.929</td>
<td>3.087</td>
<td>.900</td>
<td>1</td>
<td>.343</td>
<td>.053</td>
</tr>
<tr>
<td>Health Centre 7 (Anonymous)</td>
<td>-1.021</td>
<td>2.455</td>
<td>.173</td>
<td>1</td>
<td>.678</td>
<td>.360</td>
</tr>
<tr>
<td>Health Centre 8 (Anonymous)</td>
<td>-2.136</td>
<td>2.733</td>
<td>.611</td>
<td>1</td>
<td>.435</td>
<td>.118</td>
</tr>
<tr>
<td>Health Centre 9 (Anonymous)</td>
<td>-1.492</td>
<td>2.665</td>
<td>.314</td>
<td>1</td>
<td>.576</td>
<td>.225</td>
</tr>
<tr>
<td>Age (Ref Cat= Above 50 yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 25 Yrs</td>
<td>-6.936</td>
<td>3.502</td>
<td>3.924</td>
<td>1</td>
<td>.048</td>
<td>.001</td>
</tr>
<tr>
<td>26-35 Yrs</td>
<td>-2.004</td>
<td>1.915</td>
<td>1.095</td>
<td>1</td>
<td>.295</td>
<td>.135</td>
</tr>
<tr>
<td>36-50 yrs</td>
<td>-5.458</td>
<td>3.535</td>
<td>2.384</td>
<td>1</td>
<td>.123</td>
<td>.004</td>
</tr>
<tr>
<td>Education qualification (Ref Cat= Others)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No formal education</td>
<td>5.171</td>
<td>2.514</td>
<td>4.230</td>
<td>1</td>
<td>.040</td>
<td>176.047</td>
</tr>
<tr>
<td>Primary</td>
<td>3.059</td>
<td>2.381</td>
<td>1.650</td>
<td>1</td>
<td>.199</td>
<td>21.303</td>
</tr>
<tr>
<td>Secondary</td>
<td>-6.269</td>
<td>3.507</td>
<td>3.196</td>
<td>1</td>
<td>.074</td>
<td>.002</td>
</tr>
<tr>
<td>Tertiary</td>
<td>2.648</td>
<td>2.643</td>
<td>1.004</td>
<td>1</td>
<td>.316</td>
<td>14.132</td>
</tr>
<tr>
<td>MSc/similar</td>
<td>22.226</td>
<td>25867.733</td>
<td>.000</td>
<td>1</td>
<td>.999</td>
<td>4.494E9</td>
</tr>
<tr>
<td>Occupation (Ref Cat= Others)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If Unemployed</td>
<td>10.174</td>
<td>10.218</td>
<td>.991</td>
<td>1</td>
<td>.319</td>
<td>26202.224</td>
</tr>
<tr>
<td>Self employed</td>
<td>14.706</td>
<td>10.599</td>
<td>1.925</td>
<td>1</td>
<td>.165</td>
<td>2437531.97</td>
</tr>
<tr>
<td>Civil servant</td>
<td>34.810</td>
<td>40192.972</td>
<td>.000</td>
<td>1</td>
<td>.999</td>
<td>1.311E15</td>
</tr>
<tr>
<td>Medical</td>
<td>11.071</td>
<td>10.463</td>
<td>1.119</td>
<td>1</td>
<td>.290</td>
<td>64249.842</td>
</tr>
<tr>
<td>Work in private organization</td>
<td>11.844</td>
<td>10.350</td>
<td>1.310</td>
<td>1</td>
<td>.252</td>
<td>139195.094</td>
</tr>
<tr>
<td>Residence (Ref Cat= Urban)</td>
<td>7.462</td>
<td>2.586</td>
<td>8.322</td>
<td>1</td>
<td>.004</td>
<td>1739.894</td>
</tr>
<tr>
<td>Length of Marriage</td>
<td>2.414</td>
<td>1.341</td>
<td>3.240</td>
<td>1</td>
<td>.072</td>
<td>11.183</td>
</tr>
<tr>
<td>Income</td>
<td>.000</td>
<td>.000</td>
<td>.627</td>
<td>1</td>
<td>.428</td>
<td>1.000</td>
</tr>
<tr>
<td>Knowledge</td>
<td>1.670</td>
<td>.839</td>
<td>3.963</td>
<td>1</td>
<td>.046</td>
<td>5.313</td>
</tr>
<tr>
<td>Attitude</td>
<td>-.124</td>
<td>.123</td>
<td>1.022</td>
<td>1</td>
<td>.312</td>
<td>.883</td>
</tr>
<tr>
<td>Complication awareness</td>
<td>1.947</td>
<td>.591</td>
<td>10.866</td>
<td>1</td>
<td>.001</td>
<td>7.006</td>
</tr>
<tr>
<td>Constant</td>
<td>-48.806</td>
<td>18.043</td>
<td>7.317</td>
<td>1</td>
<td>.007</td>
<td>.000</td>
</tr>
</tbody>
</table>

Source: The Author

Table 3. Spearman’s Correlation Result

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>r-Value</th>
<th>p-value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attitudes</td>
<td>245</td>
<td>7.4286</td>
<td>1.22809</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge</td>
<td>200</td>
<td>10.1609</td>
<td>.89406</td>
<td>-.065</td>
<td>.364</td>
<td>Non-Sig</td>
</tr>
<tr>
<td>Complication awareness</td>
<td>245</td>
<td>11.3429</td>
<td>1.86947</td>
<td>-.627</td>
<td>.000</td>
<td>Significant</td>
</tr>
</tbody>
</table>

Source: The Author

The attitudes of pregnant women towards the use of haematinics (p<0.05) however, knowledge of pregnant women does not influence the attitude of pregnant women towards the use of haematinics (p>0.05). This implies that the complication awareness during pregnancy makes pregnant women to take haematinics whereas they are not influenced by their knowledge in haematinics. This shows that their knowledge on the use and benefits of haematinics is not strong enough to exert a positive impetus on the attitude of pregnant women towards the use of haematinics. The findings of this study support other studies (World Health Organisation, 2011; Getachew et al., 2012), that age, attitudes and pregnancy status which in this study may synonymously mean complication in pregnancy are important variables in the condition of anaemia. The findings of the study bolstered (Sharma and Sharma, 2012; Alam et al., 2005) that the awareness of haematinics among pregnant women is very important to the effectiveness of the treatment of anaemia and to curtailing it. In addition, the findings of this study contrast some authors’ view (Harrell, 2005) that attitude is
CONCLUSION AND RECOMMENDATIONS

In conclusion, women have adequate knowledge of haematinsics and there were high level of its use among women. Attitudes of women towards haematinsics was also very high, howbeit, their attitudes do not influence their use of haematinsics. In addition, pregnant women demographic characteristics come to play in the utilization of haematinsics with major emphasis on age, health centres, educational level, among others. To this end, the following recommendations were put forward:

i. Increasing level of awareness of haematinsics in various health centres should be introduced in the forms of users education and public awareness especially for pregnant women.

ii. Various methods of information dissemination should be inculcated especially in the rural areas such as using folk and traditional media and more importantly the use of major ICTs and media to educate people especially women and pregnant women on the issue of the use haematinsics which can also increase the awareness of people and change the attitudes of people towards the use of haematinsics especially in the rural areas.

iii. Furthermore, various formal and informal processes should be deployed to ensuring the increase awareness of haematinsics within the Nigerian society.

iv. Governments and other NGOs involved in enhancing the status of women to reducing child mortality and enhancing maternal health should endeavour to provide free haematinsics medications to pregnant women, thus influencing the use of haematinsics among pregnant women.

v. Women (this time pregnant women) should also be advised of various supplement that could be taken to boost their level of blood cell and also reduce the tendency of anaemia in their blood system- in this way, ignorance is reduced or eliminated.

vi. During pregnancy, women should be subjected to constant blood test to see if their blood count is okay and if not, necessary medication should be given to enhance their level of blood.

vii. Pregnant women should be advised on the supplements they should take at home to make sure they increase the use of haematinsics during pregnancy.

viii. Also, husbands to pregnant mothers should be carried along. Sometimes attention of the husbands should be needed and he can also be actively involved in this training on the food supplement to be taken by the pregnant women or mother.

REFERENCES

Ibid

